Water Feature Costs

- Average water feature costs is between \$200-300k
- Assumes:
 - Basic pool shape and finishes
 - Standard water effects, nozzles or waterfalls
 - Standard lighting
 - No interactive components
 - < 100' distance to equipment space</p>

Understanding the Medium or

All about Water

- Terminology
 - Knowing the difference between water effects
- Execution of effects
 - In order to execute you need to know how they work
- How to make them work
 - The devil in the details
- Knowing the details
 - Construction methods and tolerances

Types of Waterfalls

- Cascades heavy flows and falls
- Steps aerated white water
- Veils or Sheet falls smooth flows
- Waterwalls
 - Aerated contained white water
 - Textured controlled roll waves
 - Tension smooth wave patterns

Hydraulic Design

Waterfalls

- Types: Smooth Sheets, Cascades, Steps,
 Waterwalls require different flow rates and physical arrangements
- Flow requirements are per lineal foot but knowledge of how this translates into flow depth is important
- Weir design is very important to the execution of any given water effect

Flow rates for water depths

- 1/8" depth = 5 gpm per lineal foot
- 1/4" depth = 10 gpm per lineal foot
- 1/2" depth = 17 gpm per lineal foot
- 3/4" depth = 28 gpm per lineal foot
- 1" depth = 40 gpm per lineal foot
- 1.5" depth = 70 gpm per lineal foot
- 2" depth = 105 gpm per lineal foot

Shut Down Rise

- Area of upper pool (ft²⁾ x Depth of water (ft) = volume of water to catch (ft³)
- Volume of water to catch (ft³) ÷ Area of lower pool
 Shut down rise (ft)
 - Example:
 - Upper pool size $10 \times 20 = 200 \text{ sq. ft.}$
 - Lower pool size $20 \times 4 = 80 \text{ sq. ft.}$
 - Flow over waterfall = 1" = .083"
 - -200 sq. ft x .083 ft = 16.6 cu. ft.
 - -16.6 cu. ft. $\div 80$ sq. ft = .2075' = 2.49"

Laminar Flow

- Non turbulent, non crossing flow with a Reynolds number of 2000 or less
 - Stable in nozzles
 - Stable in water falls
 - Usually does not occur in pipes larger than 3/4"

Weir

- A dam used to hold back or set the elevation of a waterway.
 - Types of weirs
 - Blade weirs
 - Broad crested weirs
 - Broad crested with end contractions
 - Round crested
 - Sharp crested
 - Notch weirs, comb weirs, filigree

SHARP-CRESTED

ROUND-CRESTED

BROAD-CRESTED DEPRESSED NAPPE

TRIANGULAR-CRESTED

SHARP-CRESTED CORRECT CONFIGURATION

ROUND-BROAD-CRESTED

V-NOTCHED (FRONT-ELEVATION)

Cascades

- Easiest to execute because of weir tolerances
- Tolerant to turbulence
- Works with all types of stone finishes
 - Stone finish types:
 - Polished smooth
 - Honed just under polished
 - Thermal/flamed/exfoliated coarse texture from heat
 - Sawn rough cut
 - Split face rough cleave

Sheet Falls

- Most difficult to execute
- Smooth approach velocity required
- No turbulence
- Proper weir profile
- Proper flow volume
- Max height 10-12 feet

Waterfalls

• Flow requirements:

- Cascades:
 - Over cut stones or concrete allow up to 35 gpm per foot
 - Over coarse or natural stone allow up to 50 gpm per foot
- Smooth Sheets:
 - 3-5' fall allow 40 gpm per foot
 - 5-10' fall allow 100 gpm per foot
 - 10-12' fall allow 150 gpm per foot

Waterwalls

- Aerated textured rough surface white water look
- Tension smooth surface surface waves
- Textured tooled surface roll waves
- Chadar textured, tiled or tooled and battered – moderate white water or textured water

Chadar: *n*, a cloth used for head covering by Hindu and Muslim women

Batter: n, a backward or upward slope of a wall or the like

Flows for Waterwalls

- Aerated waterwalls up to 35 gpm per lineal foot
- Tension and textured waterwalls 4-8 gpm per lineal foot

Designing for velocity and turbulence

- Discharge velocity has to be controlled with proper pipe and fitting sizing
- Velocity calculation
 - **GPM** \div 60 = gallons per second
 - GPS \div 7.48 = cubic ft. per second
 - $-FT^3 \div$ open area of fitting (ft²) = feet per second
- Gallons \div 7.48 = cubic feet
- Open area in sq. inches \div 144 = sq. feet
- Typically design for 3'/sec from fittings

Figuring velocity

"High End Design"

- What is it and how do I get some?
 - Observation is your best teacher
 - There are very few new ideas but many new arrangements
 - Often the design is the idea that you have to work out but sometimes it is a simple but elegant detail
 - What feels right?

OVERFLOW FITTING

Who has the ideas?

- Take the time to look through books and magazines – used book stores are great
- Look at the work of sculptors and artists for inspiration who was Isamu Noguchi?
- Don't be afraid to try ask for help test
- Scale things up and down to fit your project
- Embrace technology but don't necessarily buy into it
- Surf the web

Interesting Web Sites

- wstudio.com/
- www.flow-forms.com/
- www.fountainkinetics.com/index.html
- www.inexan.com/
- www.williampye.com/
- www.pariswater.com/fontaines/fontaine.htm
- www.thais.it/citta italiane/roma/fontane/fontane.htm
- www.fountainsinthecity.com/
- www.seattlesolstice.com/
- www.rockartist.org/index.html
- www.architecturalstone.net/index.html
- www.rhodes.org/
- www.gardenvisit.com/
- www.profloinc.com

Observation

- What does your library look like?
- Teach yourself to look at the surroundings of a project you like to find out how all of the elements contribute to the whole success.
- Carry a camera
- If you pay attention, you will learn something new every day

Where do you get help?

- Landscape Architects/Architects
- Fountain Consultants
- Fountain Manufacturers
- Artists in all mediums
- Peers and contractors
- Manufacturer's representatives
- Universities students and professors